HPC 1/O for Computational Scientists:
/O Transformations

Presented to

ATPESC 2017 Participants

Rob Latham and
Mathematics and Computer Science Division
Argonne National Laboratory

Q Center, St. Charles, IL (USA)
8/4/2017

c(CP

EXASCALE COMPUTING PROJECT

' %‘ U.S. DEPARTMENT OF Ofﬁce Of
NS4 ENERGY |y Argonne &

NATIONAL LABORATORY

o
\5““ LR
& \
& )
G 3
2 &
NI
BT O




First some background:
How flat files are stored on many servers and disks

'/vO/@\ - Single file example: ckpoint43.h5

Py e - File Is split (under the covers) into
E; A;\ multiple blocks

ckpoint43.h51, Sky4325-‘"‘gj S"Y"mi“‘gj - Those blocks are then striped across a

subset of servers

B|BI| B
1

012 Persistentdatasets - Each server then stores it's block on a

collection of disks
= T@f@ o |
Servers - Most optimizations focus on making

S2 S3 better use of servers in parallel

so | sl
DiSkSE% F% % ﬁ Argonneé CVP e

2 ATPESC 2017, July 30 + August 11, 2017 / PROJECT

NATIONAL LABORATORY \




Policy detalls for striping files

[fusion

/O
/disc

ckpoint43.h5B sky4325.img j

sky8792.imgj

B|BI| B
0/ 1]2

Persistent data sets

é ------ * Network
Servers

SO S1
Disks (117 (117

S2

S3

D €D

3 ATPESC 2017, July 30 * August 11, 2017

- Mira: happens automatically, and large

files will use every server

- Theta/Cori: by default, each file will be

stored on a single server

+ You can tune this setting for large files that
will be accessed in parallel

+ See Darshan hands-on scripts (later today)
for examples

+ Example: @ °on a directory
to widely stripe all new files in directory

Py

Argonne & E(C)P e

NATIONAL LABORATORY




Managing Concurrent Access

Files are treated like global shared memory regions . Locks are used

t0O manage concurrent access

Files are broken up into lock units
+ Unit boundaries are dictated by the storage system, regardless of access pattern

Clients obtain locks on units that they will access before 1/O occurs

Enables caching on clients as well (as long as client has a lock, it knows its cached
data is valid)

Locks are reclaimed from clients when others desire access

If an access touches any data in Offset in File

a lock unit, the lock for that | | | 5 BE | 7

region must be obtained before
access occurs.

4 ATPESC 2017, July 30 + August 11, 2017

}

Lock
Boundary

Lock File Access
Unit

Argonne & E(C)P e

NATIONAL LABORATORY




Implications of Locking in Concurrent Access

In this example a header
(black) has been prepended to
the data. If the header is not
aligned with lock boundaries,
false sharing will occur.

In this example, processes
exhibit a block-block access
pattern (e.g.accessing a
subarray). This results in many

interleaved accesses in the file.

5 ATPESC 2017, July 30 * August 11, 2017

These two regions exhibit false sharing:

no bytes are accessed by both processes, but
because each block is accessed by more than
one process, there is contention for locks.

When a block distribution is used, sub-rows
cause a higher degree of false sharing,
especially if data is not aligned with lock

boundaries.
’-'__"\

\

Argonne &

5 NATIONAL LABORATORY k-’

=

EXASCALE
COMPUTING
PROJECT




/O Transformations

Software between the application and the file syste  m performs
transformations, primarily to improve performance.

Goals of transformations: Process 0 Process 1 Process 2 Proce

+ Reduce number of operations to PFS L
(avoiding latency) a4
+ Avoid lock contention
(increasing level of concurrency)
+ Hide number of clients
(more on this later)

With @ransparent® transformations, When we think about I/O

: : Hle ind
data ends up in the same locations transformations, we consider the :
in the file as it would have been mapping of data between application 7%
processes and locations in file.
normally

+ 1.e., the file system is still aware of the
actual data organization

6 ATPESC 2017, July 30 * August 11, 2017 6



/O Transformations

Software between the application and the file syste  m performs
transformations, primarily to improve performance.

We will tour through a few examples FrocessO | | Process1 | Process2 Froce
of data transformations in the — 7
following slides

The important thing to remember is
that software already exists to do , g
these things for you in HDF5,

PnetCDF, ADIOS, and MPI-10 When we think about 1/0 e ing
If you find yourself replicating these transformations, we considerthe ~__
optimizations by hand, look around mapping of data between application: "~

. ) rocesses and locations in file.
to see if you can find an off-the-shelf P

solution

7 ATPESC 2017, July 30 + August 11, 2017 7



Reducing Number of Operations

Because most operations go over multiple networks,  1/O to a PFS
iIncurs more latency than with a local FS.  Data sieving Is a technigue
to address I/O latency by combining operations:

- When reading, application process reads a large region holding all
needed data and pulls out what is needed

- When writing, three steps required (below)
. Somewhat counter-intuitive: do extra I/O to avoid contention

> >
Step 1: Data in region to be Step 2: Elements to be written to Step 3: Entire region Is written back
modified are read into intermediate file are replaced in intermediate to storgge with a single write
buffer (1 read). buffer. operation.

8 ATPESC 2017, July 30 * August 11, 2017 8



Avoiding Lock Contention

We can reorder data among processes to avoid lock

contention. Two-phase I/O splits I/O into a data reorganization

phase and an interaction with the storage system (two-phase write
depicted):

- Data exchanged between processes to match file layout
- 0 phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between processes

Phase 2: Data are written to file (storage servers)
based on organization of data in file.

with large writes, no contention.

9 ATPESC 2017, July 30 * August 11, 2017



. For more information, see W.K. Liao and A. Choudhary, 2Dynamically
TWO' P h a.se I/O AI g O rlth mS Adapting File Domain Partitioning Methods for Collective

' i 1 I/O Based on Underlying Parallel File System Locking Protocols,°
(or, You don't want to do this yourself¥s) SC2008. Noverber. 2008,

10 ATPESC 2017, July 30 = August 11, 2017 10



S3D Turbulent Combustion Code

- S3D is a turbulent combustion application using a
direct numerical simulation solver from Sandia
National Laboratory

- Checkpoints consist of four global arrays
+ 2 3-dimensional

+ 2 4-dimensional

+ 50x50x50 fixed
subarrays

Thanks to Jackie Chen (SNL), Ray Grout (SNL), and
Wei-Keng Liao (NWU) for providing the S3D I/O
benchmark, Wei-Keng Liao for providing this diagram,
C. Wang, H. Yu, and K.-L. Ma of UC Dauvis for image.

11 ATPESC 2017, July 30 + August 11, 2017

11



Impact of Transformations on S3D 1/O

- Testing with PnetCDF output to single file, three configurations, 16 processes
All MPI-10 optimizations (collective buffering and data sieving) disabled

I+

Application did the same

I+

Independent I/O optimization (data sieving) enabled thing in every case
+ Collective I/O optimization (collective buffering, a.k.a. two-phase 1/0) enabled

Coll. Buffering and Data Sieving Enabled Coll. Buffering
Data Sieving Disabled Enabled (including
Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-IO writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-10 time per 1426.47 4.82 0.60

proc (sec)

12 ATPESC 2017, July 30 = August 11, 2017 12



Transformations in the I/O Forwarding Step

External Disk arrays
network

s

T _’7

Storage nodes

| |
Compute nodes I/O forwarding nodes (or I/O
gateways) shuffle data between
compute nodes and external
resources, including storage.

13 ATPESC 2017, July 30 + August 11, 2017 13



Transformations in the I/O Forwarding Step

Another way of transforming data access by clients IS by
Introducing new hardware: |/O forwarding nodes

- |/O forwarding nodes (e.g., on Mira) serve a number of functions:
Bridge between internal and external networks

Run PFS client software, allowing lighter-weight solutions internally
Perform 1/O operations on behalf of multiple clients

+ Transparently transform data on its way to and from the file system

+ 1+ I+

- On Theta, Lnet routers fill a similar role
+ Bridge networks
+ Shape and route I/O traffic for storage system

14 ATPESC 2017, July 30 + August 11, 2017 14



Transformations in the I/O Forwarding Step

The transformations can take many forms:

- Performing one file open on behalf of many processes
- Combining small accesses into larger ones

- Caching data
- Redirecting requests through shorter network routes

15 ATPESC 2017, July 30 + August 11, 2017 15



ANot So Transparent® Transformations

Some transformations result in file(s) with differe nt data
organizations than the user requested.

- Observation: if processes are writing to different files, then
they will not have lock conflicts

- What Iif we convert writes to the same file into writes to different files?
Need a way to group these files together

Need a way to track what we put where

Need a way to reconstruct on reads

+ I+ I+

- Or alternatively, data could be stored in a different type of storage
system entirely (not a file system)

16 ATPESC 2017, July 30 = August 11, 2017 16



ANot So Transparent® Transformations

Example: PnetCDF subfiling

- Translates a single data set into
multiple underlying files

Example: HDF5 vol plugins

- Abstraction layer that can map
an HDF5 data set to multiple
files or even to completely
different storage targets

17 ATPESC 2017, July 30 + August 11, 2017 17



Why not just write a file per process?

File per process vs. shared file access as function of job size on
Intrepid Blue Gene/P system

100 % [ : .
Used at least 1 file per process s Sometimes this is the fastest

Heed MPHO strategy, but becomes
increasingly hard to sustain at

B0% [
scale.

60 %

40 %

20 %

Percentage of core-hours in job size category

0 %

Small jobs Medium jobs Large jobs
(up to 4K procs) (upto 16K procs)  (up to 160K procs)

18 ATPESC 2017, July 30 = August 11, 2017 18



/O transformation summary

Historically, the storage data model has beenthe P OSIX file
model, and the PFS has been responsible for managin g it.

- Transparent transformations work within these limitations

- When data model libraries are used:

+ Transforms can take advantage of more knowledge
- e.g., dimensions of multidimensional datasets

Doesn't matter so much whether there is a single file underneath
Or in what order the data Is stored
+ As long as portability is maintained

+
+

- Single stream of bytes In a file is inconvenient for parallel access
+ Future designs might provide a different underlying model

19 ATPESC 2017, July 30 = August 11, 2017 19



Takeaways

- Parallel file systems provide the underpinnings of HPC 1I/O solutions

- Data model libraries provide alternative data models for applications
+ PnetCDF and HDF5 will both be discussed in detall later in the day

. Characteristics of PFSes lead to the need for transformations in order
to achieve high performance

+ Implemented in a number of different software layers
+ Some preserving file organization, others breaking it

- The down side: proliferation of layers complicates performance
debugging

+ We'll address this topic later in the day

20 ATPESC 2017, July 30 + August 11, 2017 20



Next up!

- This presentation provided an overview of transformations in the
HPC I/O stack

- The next presentation will walk through an example application case
study for a first-hand look at how to program for HPC 1/O

21 ATPESC 2017, July 30 + August 11, 2017



